
Predicting the effectiveness of wildlife fencing along roads using an individual-based model

Jonathan Wilansky, Dr. Jochen Jaeger Department of Geography, Planning and Environment, Concordia University

- Wildlife-vehicle collisions: kill animals and reduce biodiversity
- An effective mitigation measure: fences + wildlife crossings
- What length of fence is needed?

Research Questions

- How does the length of a fence influence its effectiveness?
- How does the fence-end effect impact this effectiveness?

Approach

• An individual-based model (IBM)

Objectives

- A method to quantify fence effectiveness
- an interactive/visual model

Methods

IBM created using JavaScript

Model variables \rightarrow Wood Turtles (Arvisais et al., 2002)

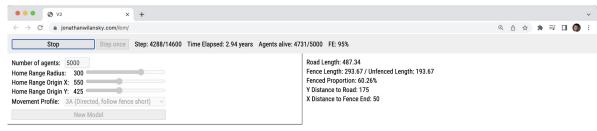
- Movement distance = 1630 m/year
- Home range radius = 300 meters
 Fence length = 600 meters

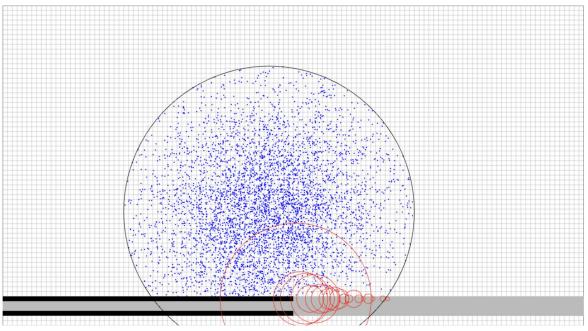
Simulations parameters:

- 5000 turtles
- 10 years of movement
- 9 movement behavior profiles

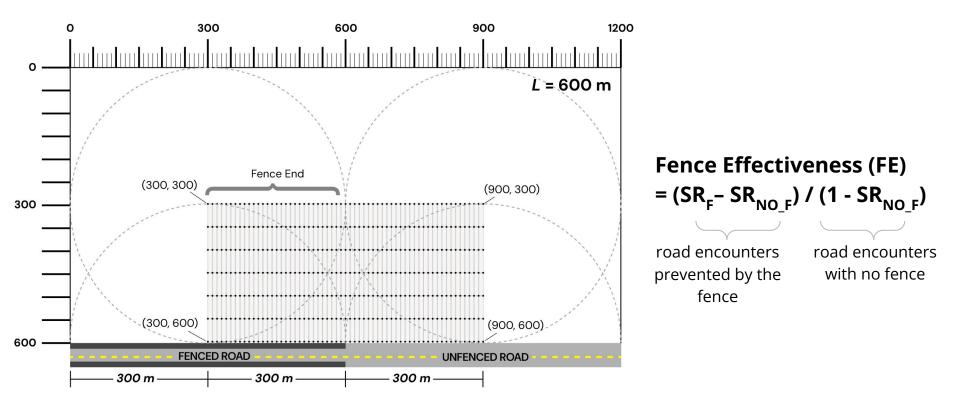
Movement Beha		Fence Following Distance		
			Steps	Meters
	1	Random	0	0
40%	2	Directed Random	0	0
0°	ЗA	Follow Fence SHORT	5	5.6
20% 20%	3B	Follow Fence MEDIUM	20	22.3
-45° 45°	3C	Follow Fence LONG	35	39
10%	4A	Follow Fence ¼ D	135	150
Direction Change Probabilities	4B	Follow Fence ½ D	269	300
	4C	Follow Fence ¾ D	404	450
	4D	Follow Fence MAX	538	600

Retreat Distance: 5 steps / 5.6m

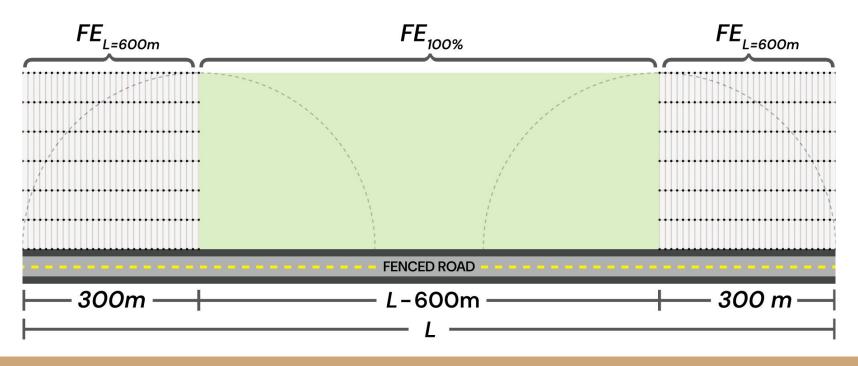

The IBM


https://jonathanwilansky.com/ibm/model/

Survival Ratio


 percentage of agents alive^{*} at the end of a simulation

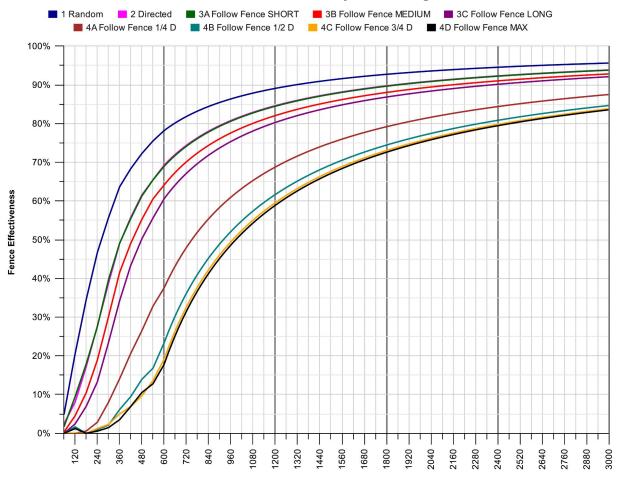
*alive \rightarrow did not step on the road



The IBM Environment and Fence Effectiveness

Method for L > 600 m

- Fences with length L > D can be determined mathematically using results from L = 600 m
- any additional length contributes 100% effectiveness

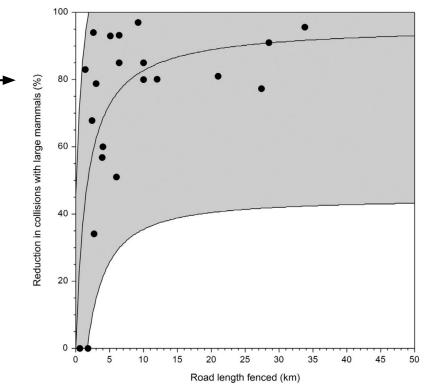

Results + Discussion

Long fences prevent significant numbers of road encounters

Fences with open ends can never be 100% effective because of the fence-end effect

Short fences vary significantly in their effectiveness

Effectiveness is reduced by fence-following behavior



Fence Length (m)

Fence effectiveness by fence length

Comparison with Real-World Data

- Empirical data from Huijser et al. (2016) comparing reduction in collisions across different fence lengths...
- However, making a direct comparison is difficult
 - different species (large mammals)
 - collisions vs road encounters

Conclusion & Future Research

- IBM method to quantify fence-effectiveness
- Evidence to support/explain the fence-end effect
- Highlights the importance of <u>fence-following</u> behaviors
 empirical data is needed

Future Work

• Refine animal-fence interactions based on literature

Fence-Following Distances

- Yosemite Toads
 - average distance of **46 m** before "giving up" (Brehme et al., 2022)

• Common Toad

 "gave-up" after an average of **40 m** if they did not reach a tunnel passage (Ottburg and van der Grift 2019)

• California Tiger Salamanders

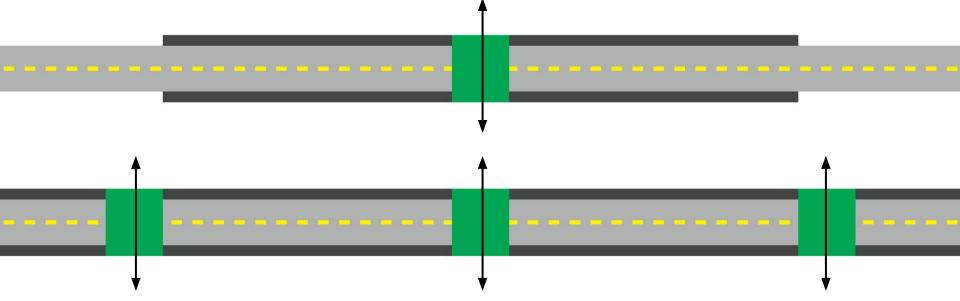
- moved an average of **40 m** along barrier fencing when migrating before turning back into the habitat (Hobbs and Brehme 2017)
- Other species...?

Future Research

• Refine movement profiles based on literature

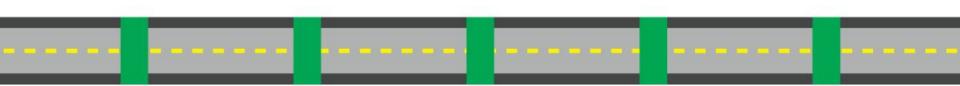
Other Applications

- Different species
- Specific landscape scenarios (e.g., migration, river)
- Wildlife passages
- Fence-end treatments
- FLOMS tradeoff (Spanowicz et al. 2020)
- Mitigation at fence ends


Specific landscape scenarios (e.g. river)

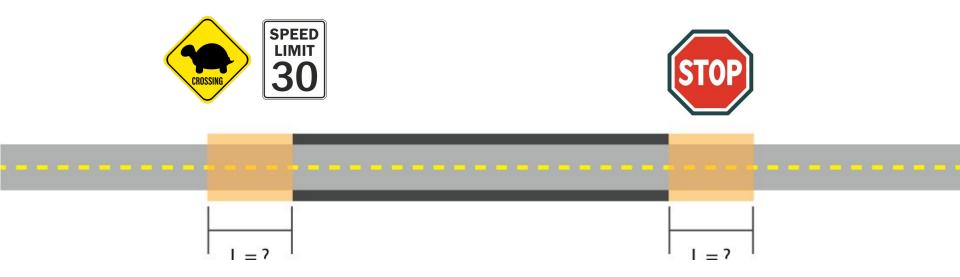
Α




Wildlife Crossing Structures

Fence-end Treatments

Specific landscape scenarios (e.g. migration)



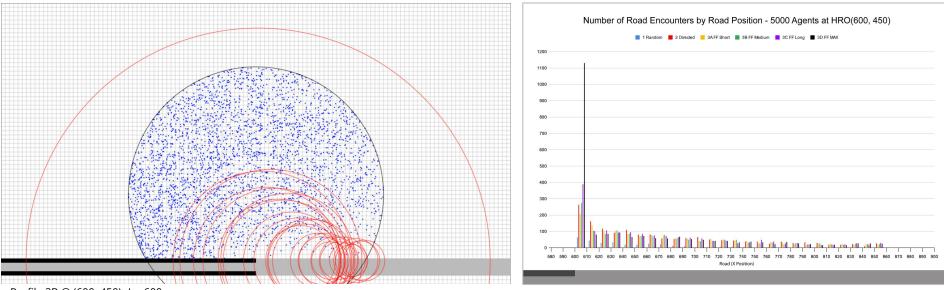
FLOMS Tradeoff (Few-Long-Or-Many-Short)

- An adaptive plan for prioritizing road sections for fencing to reduce animal mortality (Spanowicz et al. 2020)
 - fine-scale hotspots means less fencing is needed to reduce road mortality; however, many short fences may be less effective because of the fence-end effect

Mitigation at Fence Ends

References

Fahrig L, Rytwinski T. 2009. Effects of Roads on Animal Abundance: an Empirical Review and Synthesis. Ecology and Society. 14(1). doi:10.5751/ES-02815-140121. [accessed 2022 Oct 3]. https://www.ecologyandsociety.org/vol14/iss1/art21/.


Huijser MP, Fairbank ER, Camel-Means W, Graham J, Watson V, Basting P, Becker D. 2016. Effectiveness of short sections of wildlife fencing and crossing structures along highways in reducing wildlife-vehicle collisions and providing safe crossing opportunities for large mammals. Biological Conservation. 197:61–68. doi:10.1016/j.biocon.2016.02.002.

Huijser, M. P., Mosler-Berger, C., Olsson, M., & Strein, M. (2015). Wildlife Warning Signs and Animal Detection Systems Aimed at Reducing Wildlife-Vehicle Collisions. In R. van der Ree, D. J. Smith, & C. Grilo (Eds.), Handbook of Road Ecology (pp. 198–212). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118568170.ch24

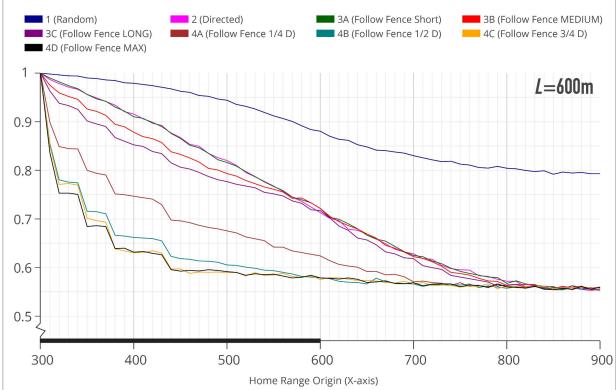
Plante J, Jaeger JAG, Desrochers A. 2019. How do landscape context and fences influence roadkill locations of small and medium-sized mammals? Journal of Environmental Management. 235:511–520. doi:10.1016/j.jenvman.2018.10.093.

Spanowicz, A. G., Teixeira, F. Z., & Jaeger, J. A. G. (2020). An adaptive plan for prioritizing road sections for fencing to reduce animal mortality. Conservation Biology: The Journal of the Society for Conservation Biology, 34(5), 1210–1220. https://doi.org/10.1111/cobi.13502 Acknowledgements: Dr. Jochen Jaeger Stefano Re LEADS

Discussion: evidence supporting the fence-end effect

Profile 3B @ (600, 450), L = 600 m

Survival Ratios & Fence effectiveness

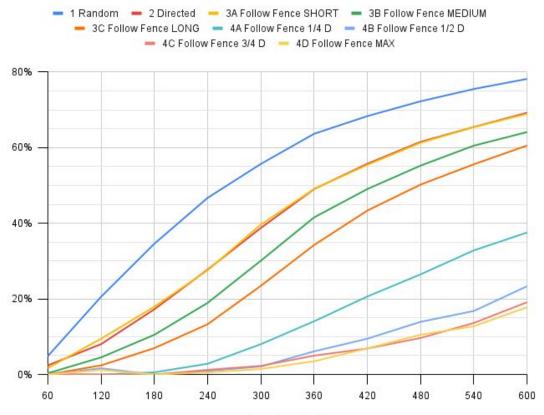

- $\mathbf{SR}_2 \rightarrow \text{Average survival ratios for}$ all X positions (with fence)
- $SR_1 \rightarrow Survival ratio with no fence$ $\rightarrow occurs at x=900$

Fence Effectiveness (FE) = $(SR_2 - SR_1) / (1 - SR_1)$

road encounters road prevented by the wit fence

ers road encounters he with no fence

Average Survival Ratio by Home Range X Position

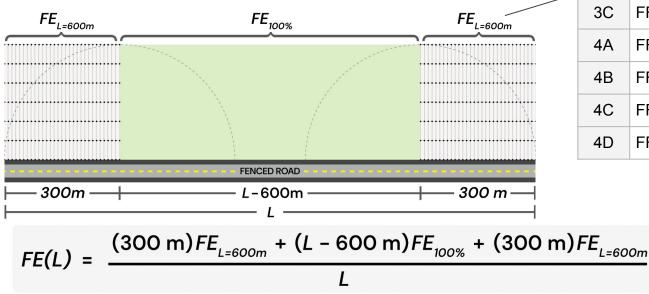


Results for $L \leq 2r$

Fence effectiveness decreases with

- fence length
- fence-following distances

	Fence Effectiveness (%)			
ence-Following Distance (m)	60 m	240 m	420 m	600 m
0	4.9	46.7	68.4	78.2
0	2.4	27.8	55.7	69.2
5.6	1.7	27.6	55.5	69.0
M 22.3	0.3	19.0	49.1	64.1
39	0.0	13.3	43.4	60.6
150	0.0	2.9	20.6	37.6
300	0.0	1.0	9.5	23.4
450	0.1	1.2	6.9	19.1
600	0.0	0.6	6.9	17.8
	0 0 5.6 M 22.3 39 150 300 450	Following 60 m 0 4.9 0 2.4 5.6 1.7 M 22.3 0.3 39 0.0 150 0.0 300 0.0 450 0.1	Following 60 m 240 m 0 4.9 46.7 0 2.4 27.8 5.6 1.7 27.6 M 22.3 0.3 19.0 39 0.0 13.3 150 0.0 2.9 300 0.0 1.0 450 0.1 1.2	G0 m 240 m 420 m 0 4.9 46.7 68.4 0 2.4 27.8 55.7 5.6 1.7 27.6 55.5 M 22.3 0.3 19.0 49.1 39 0.0 13.3 43.4 150 0.0 2.9 20.6 300 0.0 1.0 9.5 450 0.1 1.2 6.9

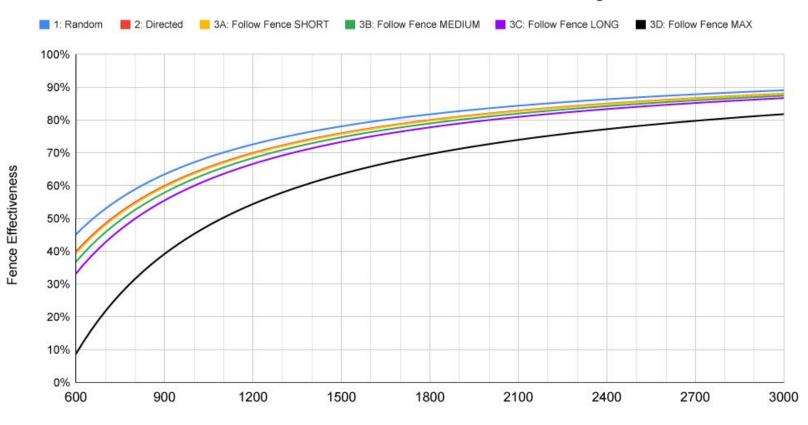

Fence Length (m)

Fence Effectiveness by Fence Length (L < 2r)

Method for L > 600 m

Fences with length *L* > *D* can be determined mathematically using a weighted average of...

- fence-end effectiveness at *L* = *D*, and
- the additional length contributing 100% effectiveness


#	Movement Profile	FE (Fence Effectiveness) for <i>L</i> = 600 m
1	Random	78%
2	Directed Random	69%
3A	FF SHORT	69%
3B	FF MEDIUM	64%
3C	FF LONG	61%
4A	FF ¼ D	38%
4B	FF ½ D	23%
4C	FF ¾ D	19%
4D	FF MAX	18%

Fence effectiveness as a function of fence length

 $FE(L) = \frac{(600m)(FE_{END}) + (L - 600m)(1)}{L}$, $L \ge 600$

$$= rac{(600m)(FE_{END}-1)}{L} + 1$$
 , $L \ge 600$

#	Movement Profile	FE _{END}	FE(L)
1	Random	0.78	<i>FE(L)</i> = -130.86m/ <i>L</i> + 1
2	Directed Random	0.69	<i>FE(L)</i> = -184.56m/ <i>L</i> + 1
ЗA	Follow Fence SHORT	0.69	<i>FE(L)</i> = (-186.18)(<i>L</i> /m) + 1
3B	Follow Fence MEDIUM	0.64	<i>FE(L)</i> = (-215.22)(<i>L</i> /m) + 1
3C	Follow Fence LONG	0.61	<i>FE(L)</i> = (-236.58)(<i>L</i> /m) + 1
4A	Follow Fence ¼ D	0.38	<i>FE(L)</i> = (-374.64)(<i>L</i> /m) + 1
4B	Follow Fence ½ D	0.23	<i>FE(L)</i> = (-459.84)(<i>L</i> /m) + 1
4C	Follow Fence ³ / ₄ D	0.19	<i>FE(L)</i> = (-485.22)(<i>L</i> /m) + 1
4D	Follow Fence MAX	0.18	<i>FE(L)</i> = (-493.26)(<i>L</i> /m) + 1

Fence Effectiveness as a Function of Fence Length

Fence Length (meters)

 $600~\mathrm{m} \leq L \leq 3000~\mathrm{m}$

Probability of Road Mortality

- The effect of road kills on amphibian populations (Hels and Buchwald 2001)
 - Aimed to quantify the proportion of amphibian populations killed by WVCs, and to estimate the probability of being killed when crossing a road.

IBMs

- Effects of Road Fencing on Population Persistence (Jaeger & Fahrig, 2004)
 - Individual-based model: to predict when fencing is good or bad for population persistence
 - Roads: barrier to movement, road mortality, reduce amount & quality of habitat
 - Fences: reduce mortality but increase the barrier effect
- Predicting When Animal Populations Are at Risk from Roads: An Interactive Model of Road Avoidance Behavior (Jaeger et al., 2005)
 - predicts the effect of roads on population persistence, incorporating general avoidance behaviors and road characteristics. Rank risks based on relative values.

Fence-End Effect

- How do landscape context and fences influence roadkill locations of small and medium-sized mammals? (Plante, Jaeger, and Desrochers 2019)
 - Roadkill survey to examine the effect of newly installed fences and landscape on WVCs
 - Roadkill occurrence was significantly higher at the fence ends than in the fenced or unfenced portions ("Fence-end effect")
 - Landscape influences discussed: vegetated medians, distance of the road to the forest edge, and distance to water.
 - Fences must be long enough to discourage the fence-end effect, but this study did not propose the length needed.
- Highway Mitigation Fencing Reduces Wildlife-Vehicle Collisions (Clevenger et al., 2001),
 - Banff National Park, fence along the Trans-Canada highway virtually eliminated WVC hotspots except for at the fence ends or at a fence opening. The road at the fence end showed the highest frequency of WVCs and the number tapered off with increasing distance on both sides.