Predicting the effectiveness of wildlife fencing along roads using an individual-based model

Jonathan Wilansky, Dr. Jochen Jaeger
Department of Geography, Planning and Environment, Concordia University

- Wildlife-vehicle collisions: kill animals and reduce biodiversity
- An effective mitigation measure: fences + wildlife crossings
- What length of fence is needed?

The fence-end effect

Shifting of roadkill hotspots towards the fence ends
(Huijser et al., 2015; Plante et al., 2019)

Research Questions

- How does the length of a fence influence its effectiveness?
- How does the fence-end effect impact this effectiveness?

Approach

- An individual-based model (IBM)

Objectives

- A method to quantify fence effectiveness
- an interactive/visual model

Methods

IBM created using JavaScript

Model variables \rightarrow Wood Turtles (Arvisais et al., 2002)

- Movement distance $=1630 \mathrm{~m} /$ year
- Home range radius $=300$ meters
\mapsto Fence length $=600$ meters
Simulations parameters:
- 5000 turtles
- 10 years of movement
- 9 movement behavior profiles

Movement Behavior Profiles

Fence Following Distance

Steps	Meters
0	0
0	0
5	5.6
20	22.3
35	39
135	150
269	300
404	450
538	600

The IBM

Survival Ratio

= percentage of agents alive* at the end of a simulation
*alive \rightarrow did not step on the road

Number of agents: 5000
Home Raye Home Range Radius: 30 Home Range Origin X: 550 425 rected follow fence sho New Model

Road Length: 487.34
Fence Length: 293.67 / Unfenced Length: 193.67
Fenced Proportion: 60.26\%
Y Distance to Road: 175
X Distance to Fence End: 50

The IBM Environment and Fence Effectiveness

Fence Effectiveness (FE) $=\left(\mathrm{SR}_{\mathrm{F}}-\mathrm{SR}_{\mathrm{NO}_{-} \mathrm{F}}\right) /\left(1-\mathrm{SR}_{\mathrm{NO}_{-} \mathrm{F}}\right)$
road encounters prevented by the
road encounters with no fence
fence

Method for L> 600 m

- Fences with length $L>D$ can be determined mathematically using results from $L=600 \mathrm{~m}$
- any additional length contributes 100% effectiveness

Fence effectiveness by fence length

- 3A Follow Fence SHORT

3B Follow Fence MEDIUM
-3C Follow Fence LONG
D Follow Fence MAX

Results + Discussion

Long fences prevent significant numbers of road encounters

Fences with open ends can never be 100\% effective because of the fence-end effect

Short fences vary significantly in their effectiveness

Effectiveness is reduced by fence-following behavior

Comparison with Real-World Data

- Empirical data from Huijser et al. (2016) comparing reduction in collisions across different fence lengths...
- However, making a direct comparison is difficult
- different species (large mammals)
- collisions vs road encounters

Conclusion \& Future Research

- IBM method to quantify fence-effectiveness
- Evidence to support/explain the fence-end effect
- Highlights the importance of fence-following behaviors
- empirical data is needed

Future Work

- Refine animal-fence interactions based on literature

Fence-Following Distances

- Yosemite Toads
- average distance of 46 m before "giving up" (Brehme et al., 2022)
- Common Toad
- "gave-up" after an average of $\mathbf{4 0} \mathbf{~ m}$ if they did not reach a tunnel passage (Ottburg and van der Grift 2019)
- California Tiger Salamanders
- moved an average of $\mathbf{4 0} \mathbf{~ m}$ along barrier fencing when migrating before turning back into the habitat (Hobbs and Brehme 2017)
- Other species...?

Future Research

- Refine movement profiles based on literature

Other Applications

- Different species
- Specific landscape scenarios (e.g., migration, river)
- Wildlife passages
- Fence-end treatments
- FLOMS tradeoff (Spanowicz et al. 2020)
- Mitigation at fence ends

Specific landscape scenarios (e.g. river)

Wildlife Crossing Structures

Fence-end Treatments

©

Specific landscape scenarios (e.g. migration)

FLOMS Tradeoff (Few-Long-Or-Many-Short)

- An adaptive plan for prioritizing road sections for fencing to reduce animal mortality (Spanowicz et al. 2020)
- fine-scale hotspots means less fencing is needed to reduce road mortality; however, many short fences may be less effective because of the fence-end effect

Mitigation at Fence Ends

References

Fahrig L, Rytwinski T. 2009. Effects of Roads on Animal Abundance: an Empirical Review and Synthesis. Ecology and Society. 14(1). doi:10.5751/ES-02815-140121. [accessed 2022 Oct 3]. https://www.ecologyandsociety.org/vol14/iss1/art21/.

Huijser MP, Fairbank ER, Camel-Means W, Graham J, Watson V, Basting P, Becker D. 2016. Effectiveness of short sections of wildlife fencing and crossing structures along highways in reducing wildlife-vehicle collisions and providing safe crossing opportunities for large mammals. Biological Conservation. 197:61-68. doi:10.1016/j.biocon.2016.02.002.

Huijser, M. P., Mosler-Berger, C., Olsson, M., \& Strein, M. (2015). Wildlife Warning Signs and Animal Detection Systems Aimed at Reducing Wildlife-Vehicle Collisions. In R. van der Ree, D. J. Smith, \& C. Grilo (Eds.), Handbook of Road Ecology (pp. 198-212). John Wiley \& Sons, Ltd. https://doi.org/10.1002/9781118568170.ch24

Plante J, Jaeger JAG, Desrochers A. 2019. How do landscape context and fences influence roadkill locations of small and medium-sized mammals? Journal of Environmental Management. 235:511-520. doi:10.1016/j.jenvman.2018.10.093.

Spanowicz, A. G., Teixeira, F. Z., \& Jaeger, J. A. G. (2020). An adaptive plan for prioritizing road sections for fencing to reduce animal mortality. Conservation Biology: The Journal of the Society for Conservation Biology, 34(5), 1210-1220.
https://doi.org/10.1111/cobi. 13502

Acknowledgements:

Dr. Jochen Jaeger
Stefano Re

Discussion: evidence supporting the fence-end effect

Survival Ratios \& Fence effectiveness

$\mathbf{S R}_{\mathbf{2}} \rightarrow$ Average survival ratios for all X positions (with fence)
$S_{1} \rightarrow$ Survival ratio with no fence \rightarrow occurs at $\mathrm{x}=900$

Fence Effectiveness (FE)
$=\left(\mathbf{S R}_{2}-\right.$ SR $\left._{1}\right) /\left(1-\mathrm{SR}_{1}\right)$
road encounters road encounters prevented by the with no fence
fence

Average Survival Ratio by Home Range X Position

Fence Effectiveness by Fence Length ($\mathrm{L}<2 r$)

Results for $L \leq 2 r$

Fence effectiveness decreases with

- fence length
- fence-following distances

		Fence Effectiveness (\%)			
Movement Profile	Fence-Following Distance (\mathbf{m})	$\mathbf{6 0 \mathbf { m }}$	$\mathbf{2 4 0} \mathbf{~ m}$	$\mathbf{4 2 0} \mathbf{~ m}$	$\mathbf{6 0 0} \mathbf{~ m}$
1 Random	0	4.9	46.7	68.4	78.2
2 Directed	0	2.4	27.8	55.7	69.2
3A Follow Fence SHORT	5.6	1.7	27.6	55.5	69.0
3B Follow Fence MEDIUM	22.3	0.3	19.0	49.1	64.1
3C Follow Fence LONG	39	0.0	13.3	43.4	60.6
4A Follow Fence 1/4 D	150	0.0	2.9	20.6	37.6
4B Follow Fence 1/2 D	300	0.0	1.0	9.5	23.4
4C Follow Fence 3/4 D	450	0.1	1.2	6.9	19.1
4D Follow Fence MAX	600	0.0	0.6	6.9	17.8

$=1$ Random -2 Directed $=3 A$ Follow Fence SHORT $-3 B$ Follow Fence MEDIUM - 3C Follow Fence LONG $=4$ A Follow Fence $1 / 4 \mathrm{D}=4$ F Follow Fence $1 / 2 \mathrm{D}$

$$
\text { - 4C Follow Fence 3/4D }- \text { 4D Follow Fence MAX }
$$

Method for L> 600 m

Fences with length $L>D$ can be determined mathematically using a weighted average of...

- fence-end effectiveness at $L=D$, and
- the additional length contributing 100\% effectiveness

		FE (Fence Effectiveness)
\#	Movement Profile	78%
1	Random	69%
2	Directed Random	69%
3A	FF SHORT	64%
3B	FF MEDIUM	61%
3C	FF LONG	38%
4A	FF $1 / 4$ D	23%
4B	FF 1/2D	19%
4C	FF 3/4D	18%
4D	FF MAX	

$$
F E(L)=\frac{(300 \mathrm{~m}) F E_{L=600 \mathrm{~m}}+(L-600 \mathrm{~m}) F E_{100 \%}+(300 \mathrm{~m}) F E_{L=600 \mathrm{~m}}}{L}
$$

Fence effectiveness as a function of fence length

$$
F E(L)=\frac{(600 \mathrm{~m})\left(\mathrm{FE}_{E N D}\right)+(L-600 \mathrm{~m})(1)}{L}, L \geq 600
$$

$$
=\frac{(600 m)\left(F E_{E N D}-1\right)}{L}+1, L \geq 600
$$

\#	Movement Profile	$\mathbf{F E}_{\mathbf{E N D}}$	$\mathbf{F E (L)}$
1	Random	0.78	$F E(L)=-130.86 \mathrm{~m} / L+1$
2	Directed Random	0.69	$F E(L)=-184.56 \mathrm{~m} / L+1$
3A	Follow Fence SHORT	0.69	$F E(L)=(-186.18)(L / \mathrm{m})+1$
3B	Follow Fence MEDIUM	0.64	$F E(L)=(-215.22)(L / \mathrm{m})+1$
3C	Follow Fence LONG	0.61	$F E(L)=(-236.58)(L / \mathrm{m})+1$
4A	Follow Fence $1 / 4 \mathrm{D}$	0.38	$F E(L)=(-374.64)(L / \mathrm{m})+1$
4B	Follow Fence $1 / 2 \mathrm{D}$	0.23	$F E(L)=(-459.84)(L / \mathrm{m})+1$
4C	Follow Fence $3 / 4 \mathrm{D}$	0.19	$F E(L)=(-485.22)(L / \mathrm{m})+1$
4D	Follow Fence MAX	0.18	$F E(L)=(-493.26)(L / \mathrm{m})+1$

Fence Effectiveness as a Function of Fence Length

Probability of Road Mortality

- The effect of road kills on amphibian populations (Hels and Buchwald 2001)
- Aimed to quantify the proportion of amphibian populations killed by WVCs, and to estimate the probability of being killed when crossing a road.

IBMS

- Effects of Road Fencing on Population Persistence (Jaeger \& Fahrig, 2004)
- Individual-based model: to predict when fencing is good or bad for population persistence
- Roads: barrier to movement, road mortality, reduce amount \& quality of habitat
- Fences: reduce mortality but increase the barrier effect
- Predicting When Animal Populations Are at Risk from Roads: An Interactive Model of Road Avoidance Behavior (Jaeger et al., 2005)
- predicts the effect of roads on population persistence, incorporating general avoidance behaviors and road characteristics. Rank risks based on relative values.

Fence-End Effect

- How do landscape context and fences influence roadkill locations of small and medium-sized mammals? (Plante, Jaeger, and Desrochers 2019)
- Roadkill survey to examine the effect of newly installed fences and landscape on WVCs
- Roadkill occurrence was significantly higher at the fence ends than in the fenced or unfenced portions ("Fence-end effect")
- Landscape influences discussed: vegetated medians, distance of the road to the forest edge, and distance to water.
- Fences must be long enough to discourage the fence-end effect, but this study did not propose the length needed.
- Highway Mitigation Fencing Reduces Wildlife-Vehicle Collisions (Clevenger et al., 2001),
- Banff National Park, fence along the Trans-Canada highway virtually eliminated WVC hotspots except for at the fence ends or at a fence opening. The road at the fence end showed the highest frequency of WVCs and the number tapered off with increasing distance on both sides.

